The Dark Side

Shawn Lawson Ryan Ross Smith
Rensselaer Polytechnic Institute SUNY Oneonta
lawsos2 @rpi.edu ryanrosssmith@ gmail.com
ABSTRACT

This paper describes the authors solution to the challenges of turning a no-distance collaboration into a long-distance one.
The solution was The Dark Side of The Force, a new coding environment designed to meet the authors’ needs. In this paper
we describe what led to the development of The Dark Side, and how The Dark Side led to new artistic paths.

1 Introduction

Authors Shawn Lawson and Ryan Ross Smith have been collaborating as The Rebel Scum since 2013. Early works,
including Kessel Run, (2014) and Sarlacc, (2015), were designed as standalone and repeatable audio-visual performance
works featuring an early iteration of Lawson’s The Force live-coding integrated development environment (IDE) for
visuals.! With these two works the audio-visual relationship is baked into the production of the works and the works
themselves in performance, but the inflexibility of this cohesiveness reduced the possibility for a satisfying collaborative
link in live performance.

With Owego System Trade Routes, (2016), (OSTR) the authors attempted to improve the functional relationship between
Lawson’s visuals and Smith’s audio, and to create a more satisfying performance environment by moving away from
the more-or-less fixed formal structures of Kessel Run and Sarlacc. The introduction of a modular synthesizer and
the development of the AppiOSC encouraged an element of performance indeterminacy and anxiety missing from the
aforementioned works (Shawn Lawson 2016).

The AppiOSC, designed in collaboration with Frank Appio, enabled a two-way bridge between Lawson’s code from The
Force and Smith’s modular synthesizer by converting control voltage into streams of numbers and vice versa. Perhaps
most interesting was the method by which Lawson’s number streams were created. In any text environment, especially the
real-timeliness of live-coding, one is not generally concerned with the text beyond what it represents and prescribes. For
instance, within the introduction to this paper the authors have been briefly outlining their past work, and hopefully these
concepts have been represented with some degree of clarity. The concept of the AppiOSC is that the words represented are
full of letters, spaces, and punctuation that enable us to clearly project our ideas but those letters, spaces, and punctuation
marks are not the ideas in and of themselves. With the AppiOSC, the authors approached these elements as “leftovers” of
the coding process to create an interesting strategy for generating dynamic numerical material that is likely not purposeful
or meaningfully controllable.” In a sense, OSTR represents the authors intention to move away from predefined structure
toward momentary stochasticity and narrative vulnerability by interpreting the code as a raw collection of symbols.

After completing a series of performances and recordings of OSTR with the AppiOSC, the practical realities of Lawson
and Smith’s long-distance collaboration made continued work impossible in its current form. The obvious solution was to
develop some method of telematic collaboration that facilitated regular rehearsals and development sessions as well as
introducing the possibility for displaced performance/presentation into the future. Despite its huge potential for crash-y,
crackling and craze-inducing malfunctions, telematic performances are generally easy to organize with video chat programs
like Skype or GoogleChat; and Chris Chafe’s JackTrip still inspires with its high-fidelity and low-latency.

Still, because The Force is browser and text based, the authors conceptualized a new IDE capable of circumventing the
traditional telematic transmission model, as the authors’ primary requirement for an efficient displaced collaboration was
reliable telematics for high-fidelity audio and visuals in rehearsal and performance.

I'The Force - https://github.com/shawnlawson/The_Force

2ji.e. how many Y’s are in a particular code block. Additionally, one author found it amusing to purposefully insert unnecessary letters that modulated
the control voltage output.


mailto:lawsos2@rpi.edu
mailto:ryanrosssmith@gmail.com

2 The Dark Side of The Force

The Force was originally designed as a graphics-only live-coding system for a single performer. The Dark Side is a
ground-up rewrite of The Force in which the graphics middle-ware is replaced and including many new features, yet still
maintaining the ease and familiarity of the original user interface (UI). The following sections briefly outline the primary
features and implementation notes of The Dark Side.

2.1 Telematic

The Dark Side uses ACE, Firebase, and FirePad.? ACE is the text editor. Firebase is a Google owned real-time database.
FirePad is a Javascript middle-ware layer that sits on top of ACE, runs client-side, and invisibly manages the multi-user
concurrent editing. FirePad and Firebase are designed to work together, such that changes submitted to the database are
immediately emitted to all listeners. In other words, every user who is listening will know immediately of any change made
by any other user, not dissimilar to an off-the-shelf multi-user text editor like Google Docs. As we’ll describe later, only
textual changes are transmitted telematically, and all of the audio and visuals are rendered locally/client-side, resulting in
low-latency and low-bandwidth (approximately 5-10 MB per hour-long rehearsal/performance).

2.2 Multi-language

The decision was made early on to support multiple languages in a single text editor buffer, in this case TidalCycles and
OpenGL Fragment Shader. This was done to give equal footing to both audio and visual languages, clean-ness of the UlI,
and the possibility for creating shared variables. The latter is a continuing effort, but has not yet come to fruition as other
serendipitous events, described later in this paper, led the authors down interesting creative paths.

It should be pointed out that there are already several multi-user IDEs in existence, including Extramuros and Overtone,
IDEs that support both audio-visual, LuaAV and Extempore, and an IDE for both multi-user & audio-visuals, Gibber.* The
only real distinction the Dark Side has in comparison to all of these is that it is multi-lingual.

2.3 Code Captured Performance

With significant inspiration from Sang Won Lee’s text writer, the authors implemented code captured performance for the
recording and play back of their work (Lee and Essl 2015a; Lee and Essl 2015b). This resulted in several findings similarly
found by Lee and Essl. First, recordings of performances and rehearsals had no impact on computer performance and
storage due to the minimal size of a code capture, approximately 10MB per hour. Second, due to how the code capturing
was implemented, including multi-cursor movement, window scrolling, and tidal execution high-lighting, the personality of
each performer comes through in the playback. Third, because the capture is of the code itself, there is no audio or visual
compression of any kind, meaning that playback quality is limited only by the quality of the computer.

2.4 High-Fidelity

Because only the code is transmitted and audio & visuals are all rendered locally, both members of a telematic collaborative
team experience full-quality audio and visuals, and this is extensible to more than just the authors’ rehearsal and performance
practice. With this system it is not necessary for the performers to be present at a particular venue while still producing
full-quality audio and video. The venue simply sets up a computer that acts as an observer to the collaborative performance,
“tapping” into the collaborative performance that is happening in one or more displaced locations.’ At venues with unstable
Internet connectivity, hot-spotting through a phone is possible due to the low-bandwidth requirements of The Dark Side.
When considering the Location/Interaction chart of Lee and Essl, if all performers are remote from the venue computer,
then it seems like sitting on the line between Co-Located-Synchronous and Remote-Synchronous is a place to start. The
question becomes how to differentiate the venue’s computer as performer or participant of the performance. It could
be argued that the computer is not dissimilar to an audio-visual feed by another means, but could also be argued that
the code is running locally and generation of the audio-visuals is unique to that computer. For example, if any random
number generation is used, then each performer/observer is generating their own unique random number stream. Each
performer/observers experience will be different and almost exactly the same.

3 ACE Editor - https://ace.c9.io Firebase - https:/firebase.google.com Firepad - https://https:/firepad.io
4Extramuros - https://github.com/dOktOr0/extramuros Overtone - http://overtone.github.io LuaAV - http://lua-av.mat.ucsb.edu Extempore -
http://extempore.moso.com.au Gibber - http://gibber.cc

SExample live-coding performance where neither performer was present. Performed at Abrons Arts Center as part of the New York City Electronic
Music Festival, 2017. https://vimeo.com/224842457/35e2eeeb0f



3 Collaboration at a Distance

The following are reflections on what occurred when the collaboration started working at a distance during the development
of The Dark Side and what happens when collaborators have access to each others domains of expertise.

The following link documents many of those sessions. https://vimeo.com/album/4688973

3.1 Shawn’s perspective

All things, even collaborations, encounter change. In our case, the physical displacement created an artistic challenge
which we decided was worth embracing. While the initial goals of the software didn’t reach their mark, I think we came
across some new territory we initially didn’t intend, that being how your collaborator (a likely worse than novice in your
field) can change your code.

What did emerge after weekly telematic rehearsals was me trying to see if Ryan would notice changes to that sound that I
would make. In simple scenarios I would change samples and see if he noticed. In more complex scenarios, I would hide
some Tidal code way at the bottom of the buffer and wait for him to notice. Occasionally I would run the code and then
delete it, so as to hide the evidence. Often I would cause errors which gave me away pretty quickly

After doing this, Ryan would start changing my code, which, personally, I feel like had more drastic affects. Frequently
these changes were incredibly difficult to track down and work with. Watching some of the recording, I think Ryan was
much more successful and adopting my changes to the audio than I was with adopting his changes to the visual.

My impression from this experimentation was that my limited audio attempts were just enough spark to kick-off another
cycle of exploration when the current rehearsal run had become stale.

3.2 Ryan’s Perspective

Like many collaborative processes the development of The Rebel Scum is more or less typical, especially regarding the
desire for increasingly responsive control and meaningful reactivity. This becomes challenging with the similarly typical
physical displacement of collaborators from one another. The Dark Side of The Force is still not at the point we would like
it to be, but the transmission of textual changes (client to server to client) as opposed to streaming audio and/or video not
only preserved the fidelity of our respective contributions, but enabled the type of participation that leads toward our next
planned version of The Dark Side.

The integration of both languages into a shared text buffer has led to interesting extrapolations from our previous aesthetic
directions by virtue of our collective desire to challenge each other through multi-lingual sabotage. The idea that I would
need to go back and “fix” a change made by Shawn is coupled with a desire to see the change as an introduction to a new
musical direction. Approaching these acts of sabotage as creative challenges has led to intriguing musical directions that I
would not have otherwise anticipated, and further removes our performance practice from the formality of Kessel Run and
Sarlacc.

4 Conclusion

The current state of The Dark Side has allowed the authors to continue their ongoing collaboration by facilitating a fast and
reliable method for sharing textual information in a shared buffer experience within a browser while rendering all content
at high-fidelity locally. It is our hope that this new rehearsal method will lead to performance opportunities that may have
otherwise been inaccessible for practical reasons, and at the very least allow us to continue developing our work.

4.1 Acknowledgments

Thank you to many in the live coding community for continuing to open source their works. The Dark Side may not have
been possible without the generosity and availability of others’ prior work.


https://vimeo.com/album/4688973

References

Lee, Sang Won, and Georg Essl. 2015a. “Web-Based Temporal Typography for Musical Expression and Performance.” In
NIME’15 Proceedings. New Interfaces for Musical Expression.

. 2015b. “Live Writing: Asynchronous Playback of Live Coding and Writing.” In ICLC ’15 Proceedings, 74—82.
International Conference on Live Coding.

Shawn Lawson, Frank Appio, Ryan Ross Smith. 2016. Closing the Circuit: Live Coding the Modular Synth. International
Conference on Live Coding.



	Introduction
	The Dark Side of The Force
	Telematic
	Multi-language
	Code Captured Performance
	High-Fidelity

	Collaboration at a Distance
	Shawn's perspective
	Ryan's Perspective

	Conclusion
	Acknowledgments

	References

